
Miniature LED Sign by Hansen Hobbies – www.hansenhobbies.com

Thank you for purchasing this Hansen Hobbies Mini Scrolling LED Sign Kit! This is a great kit to help you

learn about electronics and build your soldering skills. An explanation of the circuit is included but you don’t

have to read or understand it to build this kit. First, please make sure you have everything:

 - 2.4x1.7” PCB (1) - PIC Microcontroller (1) - 18pic IC socket (1)

 - 74HC164 shift register (3) - tact switch (4) - 1.3x2.5mm plug (1)

 - 8x8 LED matrix (3) - 2222A transistor (9) - 7805 regulator (1)

 - LM317 regulator (1) - 1.3x2.5mm jack (1) - 1x2 header (1)

 - jumper (1) - 1x2 connector* (1) - gold terminals* (2)

 - .1uF ceramic cap (2) - 22uF electrolytic (1) - 10KΩ resistor (4)

 - 470Ω resistor (8) - 1KΩ resistor* (2) - 2KΩ resistor (1)

 - 1.5KΩ resistor* (1) - 680Ω resistor* (1) - solder 48” (1)

 - 5-9VDC, 120mA power supply (an old wall supply or charger could be reused)

 *parts are optional or may not be used in finished circuit

Circuit explanation:

 Displaying characters on a sign is pretty easy, right? You just power on the lights you need and voilà!

Well, it’s not quite that simple. If we just made a big array of LED’s and controlled each one separately then

we’d need a chip with about 200 pins for this small sign, and hundreds or thousands more for a larger sign. By

using a few handy control and power techniques we’ve managed to build a scrolling LED sign with a lot of

functionality in a small package and everything runs on a very simple 8-bit microcontroller.

 So how do we control 192 pixels with an 18pin microcontroller? A process called multiplexing…it’s a lot

like how your TV or computer screen works. Instead of trying to control each pixel all the time we scan

through them much faster than the eye can see. Take a look at the schematic – you can see how all of the

LED’s are connected. An individual LED has a cathode (negative) and anode (positive) lead. To make it light we

just give it power and current flows from anode to cathode. Every LED in a given row has a common cathode

(most of these connections are made inside the LED matrix) and they’re connected to a transistor to ground.

The microcontroller can turn on any of the 8 row transistors and provide that row with a path to ground.

 Ok, now what about the anode/positive terminal? On any given column all of the anodes are common and

connect to the output pins of shift registers. That pin can either be low/0/negative in which case it will not

supply current to flow through the LED, or it can be high/1/positive. So why use shift registers here, can’t we

just connect directly to the microcontroller? There are two good reasons why it’s

designed this way and one has to do with power (explained below). The other is that it’s

difficult/expensive to find a microcontroller with enough output pins. We would need 24

output pins just to control all the columns, but in this setup we just use 2 pins to provide

clock and data to the shift registers. Also, this setup is

infinitely expandable – just daisy chain more shift

registers together to make a longer display.

 So now we can control the current path to any

given column and any given row – it’s basically a big

matrix of switches, and we can use the switch matrix to

display things. We can shift out a string of bits to

define which columns are on, and then we can turn on

any given row. Let’s look at an 8x8

matrix and display a simple “K” step

by step. The first three steps of

the sequence are shown here:

 Power is a significant driving force in this circuit design. You may wonder why we need all those

transistors to provide current paths to ground for the rows – can’t we just connect them directly to the

microcontroller? Well, if all the LED’s in a row were on then over 100mA of current would be surging through

the transistors which are rated for 600mA, while the microcontroller pins are rated for 20mA.

 Here’s where we explain the second reason for using shift registers in our circuit. Take a look at the far

right of the schematic – that’s the power stuff. You have the power jack on top where we give the circuit 5-

9V (labeled “+12V”) and then there are two voltage regulators. The 7805 is a 5V regulator and provides 5V to

the microcontroller. The LM317 is an adjustable regulator and it supplies about 2V to the shift registers. The

output voltage can be adjusted using two resistors (R11 & R12). This is a little trick used to reduce the number

of components in the circuit. Normally, if you wanted to power an LED from 5V, you’d have to put a resistor in

series with it to reduce the current to normal levels (red LED’s run at around 2V). Instead of adding 24

resistors between each of the shift register output pins and the columns we just power that entire portion of

the circuit from 2V. In order to do that we use special chips rated for a lower voltage – a little more

expensive, but a good tradeoff. Using the LM317 to create 2V has a very handy side effect; we can adjust the

output voltage, and therefore the display brightness, by changing just one of the resistors. Two extra

resistors are provided for this. Using the 2KΩ resistor for R11 will yield the brightest display and the 1.5KΩ,

1KΩ, or 680Ω can be used to make it less bright and draw less power (a plus if you plan to make this battery

powered). If your power supply voltage is on the high end (9V and up) you may also consider using a lower R11

resistor to reduce the load on the LM317 (which has to dissipate all that excess voltage as heat).

Assembly instructions:
Note: We highly recommend that you read the instructions in their entirety before you start assembly.

 We’ll assume you’ve soldered before, but if you haven’t there are plenty of good tutorials on the internet.

This kit includes solder that has a water-soluble flux in it. Flux is the stuff in solder that helps make a good

joint and also leaves an ugly mess around your solder joints. We prefer to use water-soluble flux because it

can easily be cleaned off with hot water and a brush (a hog-hair brush is best, but a toothbrush will work too).

Cleaning the water-soluble flux off the board is not optional – it must be cleaned off or the circuit could

malfunction. Running hot water over your circuit will not damage it in any way. If you want to use the plain

rosin flux you’ve got sitting on your workbench that’s fine, and you don’t have to clean it if you don’t want to.

Pretty much any flux can also be cleaned with isopropyl alcohol.

 A separate page has several photos to help you with your build. Begin by placing and soldering the three

shift registers on the back of the circuit board. DO NOT solder these onto the wrong side of the board.

They should go on the side that doesn’t have the white silkscreen text. Notice the notches in the end of the

chip denote orientation. These solder joints will be covered by the LED matrices so be sure to make good

joints and no shorts; you won’t be able to go back and fix them later. After soldering clean the board of any

flux and clip the leads flush.

 From here on you can solder in any order you choose. A good suggestion is to place and solder the smaller

parts first (resistors and capacitors) then do the larger parts. A recommended sequence is: resistors (14),

capacitors (3), transistors (9), voltage regulators (2), tact switches (4), IC socket (1), header (1), jack (1), LED

matrices (3). Use the photos and schematics as a guide for parts placement. Here are a few tips:

 Resistors and ceramic capacitors have no special orientation. Inspect resistor colors carefully.

 The electrolytic capacitor is oriented so the longer lead is positive (see the “+” mark) and the white

stripe is negative

 Do not confuse the transistors with the 2 voltage regulators – read the part numbers printed on

them and place them correctly

 The text on the LED matrices must face down as pictured

 Clip the leads as you go so they don’t interfere with soldering

 Solder the IC socket in place, NOT the microcontroller itself

 If you plan to use the power supply that we sell then you’re good to go. If you plan to use your own supply

or battery then you need to solder the included plug onto the leads. The center contact is positive and the

outer contact is negative. Be sure to thread the wires through the plug housing before soldering.

 After you have all the parts soldered in place clip off any remaining leads and clean the board with hot

water and a brush (if you used the water-soluble solder included). After washing with tap water we highly

recommend doing a final rinse with distilled water or isopropyl alcohol if you have it (this will wash away any

Miniature LED Sign by Hansen Hobbies – www.hansenhobbies.com

impurities in your tap water). Dry the board as best you can with a towel (you may have to wing it around or

smack it against your thigh to get the water out from under the parts).

 Make a final check of all the parts and solder joints – make sure everything is in the right spot and there

aren’t any shorts. For the first power-up, you can leave the microcontroller out. Plug in power and check to

make sure nothing gets hot (especially the voltage regulators). Measure the voltage on the regulators with a

meter if you have one: the 7805 should output 5V (unless you’re using a power supply <7V, in which case it will

output voltage 2V lower than the supply, which is fine), and the LM317 should be about 2V. Unplug power and

insert the microcontroller (watch the orientation) and also plug the jumper onto the header. Plug power back

in and a message should be displayed. Note that the MLS (Mini LED Sign) will stop displaying this message

after it’s been powered up 50 times. From then on it will load your customized message on startup.

Debugging problems:

 You may power on your circuit and find that one of the rows or columns isn’t working. It’s easy to track

down the problem using the schematic – just trace the row/column back to the transistor/shiftreg that

controls it and check for bad solder joints. You might try probing the circuit with the microcontroller

removed – see if you can track down the problem by manually turning on rows/columns.

Button Operations:

 We’ve worked hard to make an intuitive and easy to use button interface for this sign. With a little bit

of practice you can enter messages quite quickly. The sign is operated in two different modes; a Scrolling

Mode where the sign is displaying your message, and a Text Input mode where you can modify the message.

While the sign is in Scrolling Mode:

Manually scroll the display window to the right.

Decrease the scroll rate (there are 8 different speeds).

Increase the scroll rate (there are 8 different speeds).

Manually scroll the display window to the left.

Send string over serial port (microcontroller pin 8) to another sign.

Restart the message from the beginning.

Stop Scrolling Mode and enter Text Input Mode.

While the sign is in Text Input Mode:

Move cursor to the right.

Decrement the character to the right of the cursor; if no character exists,

insert a space.

Increment the character to the right of the cursor; if no character exists,

insert an “A”.

Insert a character (an “A”) where the cursor is.

Delete the character to the right of the cursor.

Delete the character to the left of the cursor (backspace).

Move cursor to the left

Stop Text Input Mode and enter Scrolling Mode. The message you entered is

stored in EEPROM.

For any of the keystrokes shown you can hold down the button(s) to make the operation execute over and over

at a fast rate (just like with your computer keyboard).

There is one last set of button presses that provide some very interesting options. In order to better show

the multiplexing technique described in the circuit explanation above, the MLS is equipped with a "Teaching

Mode" which allows the user to slow down the display refresh rate and see how the entire display is drawn one

row at a time. To enter Teaching Mode, press the Up and Down buttons while powering up the MLS. In

Teaching Mode the MLS will be completely operational but two additional button strokes will be available.

When Teaching Mode is active:

Hold these buttons down while turning on power to allow the Teaching Mode

options below to work.

Decrease the display refresh rate (there are 8 different speeds).

Increase the display refresh rate (there are 8 different speeds).

Starting from the normal refresh rate, each decrement will reduce the refresh rate by a factor of four, and

you will be able to see how the MLS turns on just one row at a time to draw the whole display. On the three

lowest speeds the rate at which the data is shifted across the shift registers is slowed down and displayed so

you can see that part of the control. It's impressive to see how much is being done at speeds that our eyes

can't detect! Take note that when the MLS is operating the shift registers it cannot detect button presses,

so in the very slow speed settings you will have to press the buttons in between row operations - this isn't a

problem during normal operation because the MLS usually only

spends less than 0.0001s shifting out one row, and there is

plenty of time to check the buttons. The MLS also won't be

able to process serial port commands while loitering in the row

shifting function.

Connecting the MLS to Your Computer:

 The MLS has the ability to take input via your computer’s

serial port. You could also communicate with it using another

MLS or microcontroller. To connect the sign to your computer

you must make a cable (or modify a serial cable) using the

supplied connector. The connector is a simple 0.1” female

connector with crimp terminals (we have crimping docs and videos on our website). You need to ground the

circuit to the computer ground, and connect to the transmit pin on the serial port. You can use pretty much

any 2 conductor wire, or as mentioned, take a serial cable, cutoff one end, and attached the supplied connector

to the ground and transmit wires. An example of a cable and how it connects to the MLS is shown above.

You can control the MLS by opening HyperTerminal – a serial port terminal included with all versions of

Windows (except Windows 7, but you can download and install it). It can be found under

Programs>Accessories>Communications. Make a new connection under whichever serial port you’re using, and

set the “bits per second” to 19200 and “flow control” to none. Leave the rest of the options alone. Once

connected, you can begin typing things. Here’s a basic chart of commands:

 While the sign is in Scrolling Mode (hex values shown for reference):

Keystroke Description Hex Transmission

Enter Switch to text input mode 0x0D

Right/Left Arrow Keys Manually scroll right/left 0x1B, 0x5B, A'C'/'D'

Up/Down Arrow Keys Change scrolling speed 0x1B, 0x5B, A'A'/'B'

Home Restart the message from the beginning 0x1B, 0x5B, A'H'

 While the sign is in Text Input Mode (hex values shown for reference):

Keystroke Description Hex Transmission

Standard Keyboard Characters Inserts that character 0x20 through 0x7E

Backspace Backspace 0x08

Home Bring cursor to beginning of message 0x1B, 0x5B, A'H'

End Bring cursor to end of message 0x1B, 0x5B, A'K'

Delete (won't work in HyperTerminal) Delete 0x7F

Enter Start Scrolling Mode 0x0D

Right/Left Arrow Keys Move cursor right/left 0x1B, 0x5B, A'C'/'D'

Miniature LED Sign by Hansen Hobbies – www.hansenhobbies.com

You can view a table of ASCII characters at www.asciitable.com. Note that the ASCII character 0x7F (the

delete character) is actually a smiley face, but it can only be directly entered with the fast string entry

mentioned below since 0x7F is otherwise reserved for the delete function. If you’re running your own

application then you should consider using the fast string entry command detailed below.

Connecting the MLS to another MLS or Microcontroller:

If your microcontroller is equipped with a RS232 level converter then connect to the MLS as above. If you

want to connect the MLS directly to another microcontroller then you have to bypass the RS232 level

converter so that your signal won’t be inverted. The best way to do this is by removing the resistor R13 and

transistor Q9 (or don’t solder them there in the first place) and putting a jumper wire where the yellow line is

in the image below (left). You could also just solder the 2-pin header in where Q9 is supposed to go and get

identical results. Notice that this puts your microcontroller in direct connection with the microcontroller on

the MLS. If the circuit transmitting data has a higher supply voltage, then this type of connection is not

recommended. If this is a concern then you can try going through the resistor R13 (still remove Q9) as shown

below (center) – this will allow higher signal levels to bleed through the clamping diode in the MLS’s

microcontroller. The third image (right) shows how you can tap in to ground (bottom pin) and pin 8 (the pin

used for both the right button and serial transmission) of the MLS microcontroller by soldering to the legs of

the right tact switch on the bottom of the board. When the MLS in the right image is connected to the MLS

in the left/center image it can copy its message over to the receiving MLS (by pressing the up/down buttons

at the same time while in Scrolling Mode).

Fast String Entry Protocol:

When using a microcontroller or custom user application, communication with the MLS could be done exactly as

with HyperTerminal above, but that could cause problems since the application may not know where the cursor

is at a given time, and MLS takes a while to process such commands. If you plan to do it this way then you

must include reasonable delays (10ms) between bytes for processing time. For most applications you’ll want to

use the fast string entry command developed for instant data entry. The command is sent at 19.2kbaud and is

shown here:

Transmit byte or range (hexadecimal) Description

0x02 This is the start byte

0x01 through 0x80
Send any of these values to assign the scroll rate,

0x01 being the fastest and 0x80 being standstill

0x20 through 0x7F

Here is where you send your message – any ASCII

character between 0x20 and 0x7F is valid. You

can have up to 232 characters here – any extra

will be truncated.

0x20 through 0x7F

0x20 through 0x7F

0x20 through 0x7F

0x20 through 0x7F

0x0D
End of message indicator – MLS will begin

displaying your message

While the string is being received/processed the sign will display nothing and wait perpetually for the end of

message indicator. If you don’t know what state the sign is in, a safe way to send this command is to send

0x20, 0x0D, then 0x02.

Have fun!

http://www.asciitable.com/

Miniature LED Sign by Hansen Hobbies – www.hansenhobbies.com

